Regret-Based Selection for Sparse Dynamic Portfolios

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing sparse mean reverting portfolios

In this paper we investigate trading with optimal mean reverting portfolios subject to cardinality constraints. First, we identify the parameters of the underlying VAR(1) model of asset prices and then the quantities of the corresponding OrnsteinUhlenbeck (OU) process are estimated by pattern matching techniques. Portfolio optimization is performed according to two approaches: (i) maximizing th...

متن کامل

Sparse and stable Markowitz portfolios.

We consider the problem of portfolio selection within the classical Markowitz mean-variance framework, reformulated as a constrained least-squares regression problem. We propose to add to the objective function a penalty proportional to the sum of the absolute values of the portfolio weights. This penalty regularizes (stabilizes) the optimization problem, encourages sparse portfolios (i.e., por...

متن کامل

Multi-attribute Regret-based Dynamic Pricing

In this paper, we consider the problem of dynamic pricing by a set of competing sellers in an information economy where buyers differentiate products along multiple attributes, and buyer preferences can change temporally. Previous research in this area has either focused on dynamic pricing along a limited number of (e.g. binary) attributes, or, assumes that each seller has access to private inf...

متن کامل

Strongly Adaptive Regret Implies Optimally Dynamic Regret

To cope with changing environments, recent developments in online learning have introduced the concepts of adaptive regret and dynamic regret independently. In this paper, we illustrate an intrinsic connection between these two concepts by showing that the dynamic regret can be expressed in terms of the adaptive regret and the functional variation. This observation implies that strongly adaptiv...

متن کامل

Dynamic Algorithm Portfolios

Traditional Meta-Learning requires long training times, and is often focused on optimizing performance quality, neglecting computational complexity. Algorithm Portfolios are more robust, but present similar limitations. We reformulate algorithm selection as a time allocation problem: all candidate algorithms are run in parallel, and their relative priorities are continually updated based on run...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2017

ISSN: 1556-5068

DOI: 10.2139/ssrn.2995484