Regret-Based Selection for Sparse Dynamic Portfolios
نویسندگان
چکیده
منابع مشابه
Optimizing sparse mean reverting portfolios
In this paper we investigate trading with optimal mean reverting portfolios subject to cardinality constraints. First, we identify the parameters of the underlying VAR(1) model of asset prices and then the quantities of the corresponding OrnsteinUhlenbeck (OU) process are estimated by pattern matching techniques. Portfolio optimization is performed according to two approaches: (i) maximizing th...
متن کاملSparse and stable Markowitz portfolios.
We consider the problem of portfolio selection within the classical Markowitz mean-variance framework, reformulated as a constrained least-squares regression problem. We propose to add to the objective function a penalty proportional to the sum of the absolute values of the portfolio weights. This penalty regularizes (stabilizes) the optimization problem, encourages sparse portfolios (i.e., por...
متن کاملMulti-attribute Regret-based Dynamic Pricing
In this paper, we consider the problem of dynamic pricing by a set of competing sellers in an information economy where buyers differentiate products along multiple attributes, and buyer preferences can change temporally. Previous research in this area has either focused on dynamic pricing along a limited number of (e.g. binary) attributes, or, assumes that each seller has access to private inf...
متن کاملStrongly Adaptive Regret Implies Optimally Dynamic Regret
To cope with changing environments, recent developments in online learning have introduced the concepts of adaptive regret and dynamic regret independently. In this paper, we illustrate an intrinsic connection between these two concepts by showing that the dynamic regret can be expressed in terms of the adaptive regret and the functional variation. This observation implies that strongly adaptiv...
متن کاملDynamic Algorithm Portfolios
Traditional Meta-Learning requires long training times, and is often focused on optimizing performance quality, neglecting computational complexity. Algorithm Portfolios are more robust, but present similar limitations. We reformulate algorithm selection as a time allocation problem: all candidate algorithms are run in parallel, and their relative priorities are continually updated based on run...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2017
ISSN: 1556-5068
DOI: 10.2139/ssrn.2995484